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Abstract 

The finite width correction terms to the Nambu action for Nielsen- 
Olesen strings are calculated. They consist of an extrinsic curvature 
squared or rigidity term and a new ‘twist’ term. The extrinsic cuwa- 
ture term prevents cusps forming, rounding them off with a curvature 
radius of the order of the string width. 
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The Nambu action [l] is today ubiquitous in physics. Originally in- 

voked in the context of the dual string model in hadron physics, it is now 

used as the starting point for theories of fundamental strings [2] and as an 

approximate description of the motion of Nielsen-Olesen vortex lines [3] in 

the theory of cosmic strings [4]. 

What are the corrections to the Nambu action for finite width strings? 

In the cosmic string theory, the correction terms are almost always tiny, 

being of order the string width divided by the radius of curvature squared. 

However generically the motion of a string loop produces ‘cusps’ [5], and 

‘kinks’ are also frequently generated naturally by string reconnections [6]. 

Both cusps and kinks propagate with the velocity of light, producing several 

interesting astrophysical phenomena [7]. However, both are singular points 

where the curvature radius goes to zero and the Nambu action breaks down. 

The finite width corrections to the Nambu action become sigmificant at 

these points. 

Recently Polyakovsuggested the possibility of adding an extra ‘rigidity’ 

term to the Nambu action in a phenomenological description of QCD [8]. 

The effects of this term have been extensively analysed both classically [9] 

and quantum mechanically [lo]. In particular the ‘leading Regge trajectory’ 

Nambu string solutions, doubled lines whose ends rotate at the speed of 

light, become modified so that the ends are rounded off to a finite curvature 

radius [9] and move at a slower speed. 

In this letter we return to the classical Nielsen-Olesen vortex line and 

calculate the leading order corrections to the Nambu action. We obtain 

not only Polyakov’s rigidity term with a calculable coefficient but also a 
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new ‘twist’ term of the same order which has previously been ignored in 

the literature. The rigidity term in particular has the correct sign to round 

out ‘cusps’. 

Our calculation is based on an expansion in the ‘width’ of the Nielsen- 

Olesen string w divided by the radius of curvature R of the string trajectory. 

The basic method we use first appeared in the work of Forster [ll] but 

that work is unfortunately incomplete invoking the strong coupling limit in 

particular and not proceeding beyond the Nambu action. 

Let us consider the 2-dimensional world sheet which is the trajectory 

of the center of the string (the manifold of zeros of the Higgs field). The 

world sheet X” = XO(r,o) is described by two parameters r and o ( or 

us c (7,~) ). For any spacetime point P nearer the world sheet than its 

radius of curvature we can find the nearest point on the worldsheet 0s and 

write 

z” = P(u) + pAnTA) (1) 

where nrAA)(A = 1,2) are two orthonormal vectors perpendicular to the 

world sheet and pA are the coordinates in those directions. 

In order to calculate the effective action for the string motion, we assume 

that the microscopic structure of string is locally given to zeroth order 

by the Nielsen-Olesen static vortex solution. We then calculate the first 

order correction in w/R to the field configuration and substitute this back 

into the action. Now the calculated corrections to our zeroth order ansatz 

and thus to the Nambu action become large precisely near ‘cusps’ and 

‘kinks so that strictly speaking treating them as small perturbations is not 

justified - the resulting value of w/R in the ‘corrected’ string solutions at 
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the corresponding points is of order unity. However one can clearly see the 

sign and order of magnitude of the corrections. 

The basic idea of the method is to integrate over the p coordinates, 

which parametrise the internal structure of string, to find the action for 

the string motion in terms of world sheet coordinates c+‘. 

The action we consider is [3] 

s = / d*x L 

L = -{I Da /* +V(@) + +} 

where D. c 6’. + ieA,, and V(Q) s :(I ip I* -q*)* . Our metric convention 

in this paper is (-,+,+,+). In order to perform the integration over p, 

we introduce the curved coordinate system c” = (u@,/). The action (2) 

is now 

S = d=ad’pG L 
/ (4) 

where L is the same as (3) replacing contractions and derivatives by covari- 

ant ones using the metric Gap. The metric Gap in the curved coordinate 

system is easily calculated from (1) aa 

da’ = q.bdx”dx’ = G.edfdcB (5) 

and is given by 

G,B= (z;: 2“) 
where 

G w = 7/w - 2pc Kg’ + PCPD-~-K~)&? + P~PC~N, 

G PB = GB# = pcccBw, 

GAB = JAB 

(6) 
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rlrv zz 3,X . 3,X is the intrinsic metric on the world sheet, the extrin- 

sic curvatures for the two normals n(A) are Kg) G -a,r~(~) . &X and 

the ‘twist’ is wP E a,n(r) . n(*), where a dot denotes an inner product 

for Minkowski vectors. Note that we have used the completeness relation 

7p = a,x%9,x’y” + 7qA,)fl~,). We use the summation convention for 

repeated indices throughout. 

Because of the curvature of the string, we expect the Nielsen-Olesen 

static vortex solution is also slightly modified as 

@ = [f#~s(P) + h(o,PIl ev{ ~[Bs(P) + &(u,P)]) (7) 

-4, = ( 0 , As,B(P) + AI,B(u,P) ) (8) 

where (1~5s exp[i0s], As,B) is the Nielsen-Olesen static vortex solution and 

the variables with subscript 1 are the perturbations. 

Assuming that the derivatives in the tangential directions on the world 

sheet are smaller by O(ru/R) than those in the normal directions and ex- 

panding the action (4) with respect to p up to the second order, we find 

s = / d*od’pd? (I + JI+ J*)[L~ + L1 + L2] (9) 

where J’s and L’s are from &?? and L, respectively, and the subscripts 

0, 1 and 2 correspond to the order of perturbation expansion. 

The 0-th order term LO gives the Nambu action. The first order terms, 

Jr and Lx, vanish if the O-th order solution is assumed. The second order 

action is now described by three terms, i.e. 

& = sp + sp + ls(3) 2 (10) 
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where 

$1 G 2 / 
d*ud’pJ--r J2 Lo 

= - ; / d’ufi (K(~)K(~) - KE)K@)““) / d’p pCpD Lo (11) 

SW z 2 / 
d*ud’pJ-r .I1 L1 

= - / d=ufi K(‘) / d*p pc L1 (12) 

$1 E 
I 

d%d=pfi Lz (13) 

The integration over p in Sir) gives gcD. Then Si’) vanishes because 

K(C)Ktcj - K$$‘Kcc, - WV - R(*), the Ricci scalar, and the worldsheet inte- 

grand is totally divergent in two dimensions. 

Taking the variation of Ss, we find the perturbation equations for &, Ol 

and A~,B. Those equations contain inhomogeneous terms from the variation 

of S2(*) which are proportional to the extrinsic curvatures Ktc). Hence 

general solutions can be written as 

44~ P) = K&)&)(P) + f(u) h+(p) (14) 

w, 4 = qc) (4@) (4 + f(u) hs (PI (15) 

h,~(urP) = K&+$(P) + f(o) hA,B(P) (16) 

where f(u) is an arbitrary function and h+, he and h,~ are the general ho- 

mogeneous solutions of the perturbation equations. +$“‘, giA) and A$ are 

particular inhomogeneous solutions, whose explicit forms will be discussed 

later. 

Solving the perturbation equations and inserting the solutions into the 
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S2, we find the total effective action aa 

S = --/I J d2ufi - $1 d%fiK;j K& 

where 

p zz - 
/ d*p Lo 

1 
1 d’p606 - = -- 

ff0 2 / 

- 1 

PO / 
d*uJ-r wlrw” (17) 

(18) 

E - i / d*p [(a~$y’)’ + @#AoF) + eArj)* + #)2(aA& + ~As,A)* 

+ (&))*v”(bS) f b$S@)(aAeS + e&,A)(aAe$C1 + drj) + i&(F?gz] 

(19) 
1 

PO=2 ’ / d2P P*[(aAdS)2 + &(aAeS + ‘&,A)* + $S:B] (20) 

Here 6 = (&,01, AI,B) and 0 is the operator occurring in the equation for 

small fluctuations about a static straight string. As Nielsen-Olesen strings 

are stable (121 0 is negative definite and a~ is positive. PO is obviously 

positive. The homogeneous solutions do not give any contribution to the 

effective action (17). 

The perturbation equations for the inhomogeneous above solutions can 

be reduced to a single ordinary differential equation aa follows: 

Assuming the following functional forms 

A* sB = [as(p) - 11 (-pz,pl) 
eP* 

(21) 

&’ = fib) 
p (Pl,PZI (22) 

ApJ = y (Pl,P2) with’ al,B = !y (- ~2, PJ (23) 
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aBey’ + eA$ = y (pl,pz) with cr,B = $!?l (- pz, pl) (24) 

the perturbation equations can be reduced to 

{ J$P$, + ,=;, 1 - V”(4S) } /l(P) = d’, + q 

(25) 

al(p) = ; I dppa’s 
2fl and cl(p) = as[l- -1 
PdS 

The origin of the extrinsic curvature squared correction term is easily 

understood. If one bends a Nielsen-Olesen string, the minimum energy 

solution is slightly different from the straight string solution. Any pertur- 

bation of the straight string solution produces a higher energy per unit 

length, and that is exactly what happens here. The effect of this term can 

be seen from the results of (91 where the cusps at the end of the rotating 

doubled line solution are rounded off to a radius of curvature of the order 

of l/m, which is of the order of the width of the string.~ 

Our new ‘twist’ term is slightly more subtle. Equation (1) only defines 

the p coordinates up to a local O(2) rotation of the normal vectors. The 

‘twist’ w,, is not however invariant under local O(2) rotations - it changes 

by a,$ where $ is the rotation angle. Now in the case of a static string for 

example wlr is only a function of u and (locally) can always be set to zero. 

In fact it can be seen from the above action that doing so will result in the 

configuration of least energy. However the string’s motion will generally 

produce a noneero w,,, which cannot be gauged away. 

Let us first understand this in terms of the fields making up the string. 
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Imagine a static Nielsen-Olesen string constrained to lie in a helix, and in 

the minimum energy configuration i.e. with w,, = 0. Now consider the 

closed line integral of the gauge field down the centre of the helix, out 

radially, and back up the length of the helix to enter the helix radially 

again. This is a gauge invariant quantity and measures the number of 

turns of the helix through the loop times the unit of magnetic flux carried 

by the string. Now upon evolution with the Nambu equations (see below) 

the helix becomes a line. If the flux through the loop has not changed then 

the configuration is clearly not just a locally boosted ‘static straight string’ 

since it has a net flux winding around it. Conversely if the flux has changed 

then by Faraday’s law there must be a nonzero electric field induced along 

the string axis. In this case too it is not a locally boosted ‘static straight 

string’. Thus we see that the Nambu trajectory inevitably takes a string out 

of the ‘untwisted’ internal ground state. In reality the twisted string can 

of course lose energy by radiating field excitations, but we ignore energy 

loss processes here. We expect them to be suppressed by the oscillation 

frequency divided by the mass of the higgs or gauge particles. 

In order to see the same thing from the ‘string’ point of view, con- 

sider the oscillating helix solution of the Nambu equations. In the or- 

thonormal gauge this is described by two constant parameters fl and a (or 

pEJiZF)aS 

X” = (r,c~u,~cos(~u)cos(f2r), ~sin(ILr)cos(t-Ir)) (27) 

Explicit calculation shows that wP can be gauged to zero in the limits of 

p + 0 and LZ + 0, which correspond to a striaght string and an oscillating 
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loop respectively. However in general wB cannot be gauged away, as may 

be seen by calculating the curl cp”d,,wy which is nonaero. The magnitude 

of w,, is in general comparable to the extrinsic curvature. 

w,, can be gauged away for strings moving in any spatial plane - one 

of the normals can be chosen to be in the third spatial direction. Thus 

only the rigidity term is important. In particular, there is a static loop 

solution with radius - 0(1/&i) [9] since the coefficients as and ps are 

of order O(X) when e* - X. Unfortunately ( or fortunately for the galaxy 

formation scenario in cosmic string theory) this radius is of the same order 

of the string width, hence we cannot answer at least by the present rough 

estimation the question of whether this static loop solution can really exist 

and makes the universe string-dominated. 

In this letter we have calculated the higher-order correction terms to 

the Nambu action taking into account the width of string. We have found 

not only the rigidity term (the extrinsic curvature squared), which prevents 

cusp formation, but also a new ‘twist’ term. The details will be published 

elsewhere, including the numerical calculations of the coefficients l/as and 

l//30 for various coupling constants. 
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Erratum to: 
FERMILAB-Pub-87/209-A, UTAP60/87 

Finite Width Corrections to the Nambu Action 
for the Nielsen-Olesen String 

Kei-ichi Maeda and Neil Turok 

1. Page 2, line 2, delete ’ The rigidity...cusps.’ 
2. Page 6, Equation 17, change ‘-1’ to I+$‘. 
3. Page 7, Line 7, delete ‘Any pertzbation . . . . of the string.’ and replace 

with ‘The true energy per unit length is lower than what one obtains from the 
zeroth order solution. The sign of our Ks term is actually opposite to that 
assumed elsewhere in the literature [9],[10] and corresponds to a negative 

rigidity. Nevertheless the argument of [9] still applies and prohibits cusps 
because the action diverges for solutions ‘close’ to those with cusps. Cusps 
are presumably rounded off on a scale = w.’ 

4. Page 9, line 6, delete ‘In particular...string-dominated’ and replace by 
‘It would be interesting to find solutions to our action (17).’ 


